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Introduction 
 Magnetic resonance spectroscopy provides the noninvasive detection of a 
number of important cellular metabolites and has become a valuable research and 
clinical tool to monitor normal and abnormal metabolism in the newborn brain [1-20]. 
Both phosphorus and proton MRS have been applied in pediatric studies, with the 
majority of the studies being proton MRS due to its greater inherent sensitivity. 
Phosphorus MRS studies have demonstrated the ability to monitor key metabolites such 
as adenosine triphosphate (ATP), phosphocreatine and inorganic phosphate in the 
pediatric brain and to detect significant bioenergetic changes following hypoxic-ischemic 
brain injury [10, 19].  While of great biologic interest, phosphorus MRS is severely 
limited in its clinical applicability due to low inherent sensitivity and its limited availability 
on clinical MR scanners. Since the phosphorus nucleus precesses at a different 
frequency, specialized excitation and reception hardware is required that is not typically 
provided with clinical MR scanners and the low inherent sensitivity limits the minimum 
volume to approximately 20 cm3 for adequate signal-to-noise MRS data from the human 
brain.  
 Proton MR spectroscopy, however, can be performed routinely on most clinical 
MR scanners and has been applied in a wide range of pediatric applications [20]. This 
method is based on the detection of MR signals from hydrogen atoms that resonate at 
specific frequencies due to the particular molecular environment of the small mobile 
compounds observable by proton MRS. MR spectra are simply graphs of amplitude 
versus frequency in which the area under a “peak” is proportional to concentration. The 
common metabolites detectable at millimolar concentrations in the normal pediatric 
brain by proton MRS are N-acetyl aspartate (NAA), creatine, choline (including 
contributions from phosphocholine, and other choline-containing compounds), 
myoinositol, and composite resonances of glutamine, γ-aminobutyrate (GABA), and 
glutamate. This composite resonance is abbreviated Glx. In cases of brain injury, 
elevated lactate can be observed and, in cases of cellular necrosis, lipid resonances 
from membrane degradation can be observed. NAA has been shown in numerous 
studies to be a marker of neuronal function and is typically decreased following brain 
injury. Choline and related compounds are involved in membrane phospholipid 
synthesis and are elevated with increased cellular proliferation, including both normal 
and neoplastic growth. Myoinositol levels reflect changes in osmolality and glial cell 
density and thus can be altered due to a variety of pathological conditions.  
 
Single Voxel Proton MR Spectroscopy of Normal Human Brain Maturation 

Neonatal MR spectra are strikingly different from those of adult brain. In the 
newborn brain, the NAA resonance is much smaller than the choline resonance, 
whereas the NAA peak is much larger than the height of the choline peak in the adult 
brain. The metabolite concentrations and their ratios in babies change nonlinearly with 
age, and the most rapid changes occur in premature and term newborns [7,8]. Single 
voxel MRS studies of the developing brain were acquired from specific regions (e.g. 
occipital cortex, parieto-occipital white matter, and thalamus) with voxel sizes of typically 
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8 cm3 [7,8]. By acquiring water unsuppressed spectra and measuring the relaxation 
times for each resonance, the absolute quantitation of each metabolite relative to water 
could be calculated providing estimates of concentration [8]. These studies showed that 
choline (and choline-containing compounds) were significantly higher in concentration 
by a factor of two as compared to adult values. These studies also demonstrated 
significantly lower concentrations for NAA in newborns and that NAA levels increased 
rapidly following birth.  

More recently, short echo time, quantitative MRS was applied in a study of 28 
exams of 21 newborns with gestational ages ranging from 32 to 43 weeks [21]. In this 
study, MR spectra were acquired from three anatomic locations, centrum semiovale for 
developing white matter, thalamus including both hemispheres, and occipital gray 
matter. Also, the spectra were analyzed using linear combination model fitting [22] of 
the short echo time spectra, considerably extending the range of observable 
metabolites to include acetate, alanine, aspartate, cholines, creatines, γ-aminobutyrate, 
glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, 
macromolecular contributions, N-acetylaspartate (NAA), N-acetylaspartylglutamate, 
phosphoethanolamine, scyllo-inositol, taurine and threonine. Significant concentration 
changes with age and location were observed for many metabolites. In this study, 
significant increases in NAA, glutamate, creatines, and taurine were observed with early 
brain maturation as well as significant decreases in glutathione, lactate, myo-inositol, 
scyllo-inositol, and phosphoethanolamine.  The most dramatic changes with maturation 
were the increased NAA and decreased myo-inositol [21]. Also, the results of this study 
demonstrated that, although some compounds were significantly reduced such as NAA 
and some elevated such as choline between premature (32 week gestational age) and 
term newborns, the total brain metabolite content was not significantly different.  

 
MR Spectroscopic Imaging of Early Human Brain Maturation 

Single voxel MRS acquisition is available on most clinical MR scanners and has 
been used in the vast majority of pediatric MRS studies. However, single voxel MR 
studies are limited in spatial coverage and spatial resolution.  Especially for the small 
neonatal brain, it is problematic to attain accurate placement of the localized MRS 
volume to a specific anatomic location without spectral contamination from adjacent 
tissues. Single voxel MRS studies of the neonatal brain are limited to one or two regions 
and therefore cannot assess the spatial distribution of metabolites.  To overcome this 
limitation, recent studies have added phase encoding techniques to obtain localized 
spectra from arrays of multiple contiguous voxels [23]. This technique, commonly 
termed MR spectroscopic imaging (MRSI), provides an assessment of spatial 
distribution of the various metabolites in addition to their relative concentrations within a 
voxel.  

MRSI of premature and term newborns demonstrated the feasibility of detecting 
the 3D distributions of choline, creatine, and NAA resonances in the neonatal brain and 
significant (p<0.05) spectral differences were detected among anatomic locations and 
between the premature and term groups [16]. In premature newborns, regions such as 
the thalamus that mature earliest demonstrated the highest levels of NAA, whereas later 
maturing frontal white matter showed the lowest. The basal ganglia spectra showed the 
largest increase in NAA between term and premature infants, consistent with rapid 
maturation over this time period. This study demonstrated that MRSI can detect 
“metabolic maturation” in cellular metabolite levels and thus may be an important tool in 
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the assessing both normal and abnormal cerebral development in the pediatric brain. 
The significant differences in metabolite distributions and peak area ratios between the 
term and preterm infants show that metabolites vary with both topology and with brain 
maturation [16]. This study also indicated the need for determining topologic and age-
matched normative values before metabolic abnormalities in neonates can be 
accurately assessed by MRS. 
 
Single Voxel Proton MR Spectroscopy in Neonates with Abnormal Outcome: 
Proton spectroscopy has shown significant potential for the early detection of brain 
injury in encephalopathic neonates [1-6, 14-15].  In the normal term infant, lactate is 
typically not seen in the brain parenchyma, although it may be present in the 
cerebrospinal fluid of normal neonate [24,25]. Lactate is seen in the brain within hours 
after injury, probably due to mitochondrial impairment and subsequent anaerobic 
glycolysis in brain parenchyma.  The concentration of N-acetylaspartate (NAA), which 
increases as neurons mature and decreases with neuronal injury, is reduced within a 
few days of any injury [6]; the degree of reduction of NAA seems to correlate well with 
neurodevelopmental outcome [15]. Some investigators report an increase in 
glutamine/glutamate, as well [26].  Elevated lactate peaks (Lac/NAA ratios above 0.5, 
Lac/Cr ratios above 1, elevated Lac/Cho) have been shown to be associated with 
impaired neurological outcome at age 12 months [3,15]. A significant association (Table 
1) was found between metabolite ratios (increased lactate/choline and lactate/NAA 
ratios in basal ganglia and WM) and poor 12 month neuromotor outcome [15]. All 
spectra obtained demonstrated the normal peaks of choline, creatine and NAA but 
many demonstrated a significant lactate resonance presumably due to cellular effects of 
hypoxic/ischemic injury. To determine whether lactate observation correlated with 
neurologic outcome, the MRS ratios were compared with neurodevelopmental exam 
findings at 1 year [15].  
 

Table 1: Correlation of  MRS  Ratios in Basal Ganglia (BG) and Watershed (WS)  
Voxels with 1 Year Neuromotor (NM) Scores 

 
NM Score 0 1 2-3 5-6 
 
N of patients  13 7 7 4 
BG Lac/Cho  0.02 (0.06) 0.06 (0.03) 0.12 (0.06) 0.42 (0.24) 
BG Lac/NAA 0.11 (0.08) 0.14 (0.09) 0.13 (0.09) 0.48 (0.16) 
WS Lac/Cho 0.10 (0.07) 0.20 (0.11) 0.13 (0.10) 0.48 (0.22) 
WS Lac/NAA 0.21 (0.11) 0.28 (0.16) 0.33 (0.27) 1.10 (0.5) 
 
Staistical Significance: BG Lac/Cho: p=0.0001, WS Lac/Cho: p=0.005, BG Lac/NAA:   p=0.0003,  
WS Lac/NAA:  p=0.01, BG NAA/Cho:  p=0.001, WS NAA/Cho: p=0.001 
 
 
MR Spectroscopic Imaging in Neonates with Abnormal Outcome: 

No large studies have been performed looking at the association of proton MRS 
with neurodevelopmental outcome in preterm neonates, probably because of the 
difficulty of unstable neonates and the technical limitations in acquiring reliable 
metabolic MRS data throughout the neonatal brain.  In preliminary studies, a MR-
compatible incubator [27] and a lactate-edited MRSI sequence [28] were used to detect 
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abnormal metabolite levels following brain injury. This specialized MRSI technique 
provides two sets of spectral arrays with the resonances of choline, creatine, NAA and 
lipids in one, and only lactate in the difference spectra. This permits the unambiguous 
detection of lactate which can be elevated in cases of perinatal hypoxic/ischemic brain 
injury (Figure 2).  
 

 
 
Figure 2. Lactate-edited 3D MRSI data are shown for a neonate with neonatal asphyxia. 
The summed spectral array shown in the middle include the choline, creatine, NAA and 
lipid resonances and the difference spectra shown on the right demonstrate just the 
lactate peaks. Clinical follow-up demonstrated severely abnormal neurologic outcome in 
this patient. 
 

 
 
Figure 3. Lactate-edited 3D MRSI data from the basal ganglia are shown for 
representative patients from each of the three outcome groups. Note the increased 
lactate in the abnormal outcome groups and reduced NAA in the severely abnormal 
group. 
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Our preliminary MRSI studies indicate that NAA values are lower and lactate values 
higher in preterm neonates with other evidence of brain injury than in preterm neonates 
who have otherwise normal imaging and development.   

 
Conclusions 

The use of metabolic MRS techniques in the evaluation of newborns and infants 
is still in its early stages, but seems to have great promise.  Applications will likely 
include assessment of brain injury in preterm infants, assessment of brain injury or 
malformation in encephalopathic term infants, assessment of developmentally delayed 
infants, and assessment of infants with vasculopathy.  A major current challenge is the 
establishment of ranges of normal values for the different regions of the brain at 
different ages, so that we can identify those children with mild-to-moderate 
abnormalities in addition to severely affected children.  
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